
No-Code vs. Low-Code

Low-code may mitigate the impact of enterprise
development challenges, but only no-code can
overcome them.

Contents
Introduction 3

The Enterprise Customization Conundrum 5

Code < Low-Code < No-Code 7

The Advantages of No-Code Over Low-Code 9

No-Code in Action 12

Conclusion 15

3No-Code vs. Low-Code

Today’s enterprise applications have been designed
to scale complex business tasks across multiple
departments, devices, systems, and timezones.
These systems provide unprecedented productivity
gains for organizations, new opportunities for
workers, and enhanced services for users. However,
as the sophistication of these applications
increases, so do the difficulties of building and
maintaining them.

Following years of steady improvements, development times and costs have begun moving
upwards in the past decade. Why? The complexity of modern enterprise systems is colliding
with the natural limits of building with code.

Enterprises are free to continue swimming against the strengthening tide by repeatedly
increasing their software development spend. Or, they can overcome this engineering challenge
by tapping solutions that engineer around it.

Enter “low-code.” These simple development tools were introduced in the early 2000s as a way
to automate repeatable coding tasks. To be sure, low-code may have helped make some common
processes more efficient, but it hasn’t been able to overcome today’s development challenges
because it doesn’t overcome code.

“No-code” platforms are all-in-one development platforms that completely eliminate coding
from the process. This means organizations can invest all their time and resources into building
value and perfecting the user experience instead of toiling with syntax, bugs, and legacy code.

It’s understandable why the marketplace may conflate these two similar-sounding terms, but they
are anything but interchangeable. Here at Unqork, we strongly disagree with the decision of some
analysts to casually bundle both technologies together into a single “low-code/no-code” category.
In this eBook, we will demonstrate why only no-code can meet the needs of the modern digital
enterprise through the exploration of several key differences:

https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess
https://bowerycap.com/blog/insights/custom-apps-grew-100b-last-5-years/

4 No-Code vs. Low-Code

5 No-Code vs. Low-Code

Custom Development Is Hard (and Getting Harder)
A study by QSM found that between 1980 and 2010, the average time needed to develop
custom enterprise software steadily declined. These initial improvements were due to factors
such as new strategic development strategies, better reuse techniques, and the fact that
enterprise IT has become more efficient overall. But then, in the past decade, a strange
thing began to happen: Average development times began to tick upwards. In fact, they’re
accelerating (in the wrong direction).

This reversal of fortunes is due to complexity. Today’s digital architectures are disparate,
expansive, and built on decades of deeply-ingrained legacy systems (some of which have been
built with now-obsolete programming languages). Beyond the initial build, these challenges
impact ongoing system maintenance, as well. In fact, these issues are arguably even more of
a resource-suck in the latter phases of the software development life cycle (SDLC). Studies
have shown that large enterprises can spend up to 75% of their total IT budget just maintaining
existing systems.

As these troubling trends grow, so do the expectations placed upon enterprise software.
Today’s businesses expect development to move at the speed of the economy. Indeed, the
ability to build robust software rapidly is a fundamental aspect of digital resilience, an important
competitive differentiator defined by an organization’s ability to mount a robust digital response
to marketplace disruptions of any scale.

It has become painfully clear that traditional code-based methodologies are simply not able to
keep up with the demands of the modern enterprise. Low-code tools may mitigate the impact of
these challenges, but only no-code platforms can overcome them.

The Enterprise Customization Conundrum
Custom software is a crucial part of the modern enterprise. Forrester predicts that enterprises will
spend $550b on creating custom software in 2020, or about half of the total global software spend.

Over the years, packaged enterprise software has grown in both sophistication and popularity,
but it can’t provide the configurability of a custom-built solution. Only custom solutions allow
companies to differentiate their products and processes, and—ideally—secure an advantage over
the competition.

However, building custom enterprise software isn’t for the faint of heart—particularly when relying
on traditional code-based development methodologies. And it’s only becoming more challenging.

CHALLENGES

Manual, hand-coded processes
Disparate systems
Difficult integrations
Limited re-use across projects

IMPLICATIONS

Long initial build times
Difficulty hitting requirements
Hard to make changes
Huge legacy costs

COMMON
ENTERPRISE
TECHNOLOGY
CHALLENGES
HAVE PERSISTED
FOR YEARS

https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess
https://www.unqork.com/resources/latest-content/why-relying-on-legacy-code-like-cobol-is-a-disaster-waiting-to-happen
https://www.unqork.com/resources/latest-content/ebook-building-a-digitally-resilient-enterprise

5 How No-Code Enhances the Software Development Lifecycle

For decades, the standard in software development
has been based on the idea of building faster.
This isn’t a new challenge. In fact, many years ago,
the problem was even worse, as many of the stopgap
solutions we rely on today didn’t even exist yet! Let’s
take a quick look at how building applications has
evolved over the last several decades:
• The 1980s were a difficult period for software development.

COBOL was the dominant language, but it was really difficult
to use. Many projects failed to get off the ground or, worse,
were released but malfunctioned. That’s why many refer to
this period as “The Software Crisis.”

• Then the 1990s came along and things got a bit better.
COBOL continued to dominate, but methodology innovations
like Rapid Application Development (RAD) and higher-level
(and more user-friendly) programming languages like Java
started to gain traction in the enterprise and building software
got more efficient and easier. Applications became more
useful and the time spent creating them decreased.

• Next came the 2000s, which saw Java surpass COBOL as the
dominant language. Innovations like frameworks (e.g., Spring)
and Integrated Development Environments (IDEs) along with
low-code platforms like Appian, Mendix, and Outsystems all
helped developers become more productive.

• Then the 2010s came along, higher-level languages like
Python started to gain adoption, and low-code platforms and
frameworks became more advanced. Methodologies like Agile
started to permeate enterprise development projects. And
despite these advancements, the average time to complete
a typical software project was 10,500 hours, a 20% loss in
productivity.

So, why this recent downtick in productivity? There’s
no doubt software got more complex in the 2010s,
but it got more complex in previous periods as well.
What’s different is that the most recent increases in
complexity have not—yet—been matched with a new
set of development technologies that are sufficiently
able to address these challenges, and as a result,
budgets are exploding, backlogs are growing, and
projects failing to meet requirements and timelines.

A Brief History of Software
Development Productivity

2010s

2000s

1990s

HOURS REQUIRED FOR TYPICAL
ENTERPRISE APPLICATION

Source: QSM Software Development
Database, 2019

1980s

18,019

13,667

8,919

10,500

https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess
https://www.qsm.com/articles/long-term-trends-40-years-completed-software-project-data?utm=gcaccess

7 No-Code vs. Low-Code

WHAT IS “LOW-CODE?”

Low-code (LC) was developed in the early 2000s to amplify developer productivity. These
solutions work by inserting repeatable scripts into specific parts of the platform. Some of
these tools may have drag-and-drop functionality, but to achieve complex—or unique—custom
functionality, coding is still necessary.

LC tools work with various common programming languages, while some use a proprietary
language that users have to learn. These tools were designed with coders in mind, not for
business or other non-IT users. Furthermore, most LC platforms focus only on internal, back-end
workflows and few have any consumer-focused capabilities (e.g., styling, anonymous users).

WHAT IS “NO-CODE?”

No-code (NC) is a category of cloud-based services that provide enterprises with a single unified
platform to develop, run, and manage applications without the complexity of managing all of
the parts themselves. These platforms were developed in the late-2010s with a focus on rapid,
flexible application development for both seasoned developers and non-IT professionals (i.e.,
“citizen” developers).

Code < Low-Code < No-Code
Low-code and no-code both rose to prominence with the promise of replacing hand-coding
with visual elements, so developers can spend less time on coding and syntax and focus more
attention on building business logic and perfecting the user experience.

To be sure, low-code has been able to inject some efficiencies to the process, but only no-code
can meet the efficiency demands of the modern enterprise (see page 13 to read about how, in
just a matter of days, NYC was able to use no-code to develop a series of digital hubs that could
remotely connect citizens to vital services).

It might be useful to frame these two technologies this way: Low-code is a somewhat-useful
development tool, while no-code is a complete development platform that comes with all the
tools needed to build and maintain enterprise-ready software. Let’s dive in...

7No-Code vs. Low-Code

Low-Code vs. No-Code: The Basics

Low-Code No-Code

History
Developed in the early 2000s to accelerate
developer productivity vs. hand-writing custom
code from scratch

Developed late 2010s with focus on rapid, flexible
application development for both developers and
non-developer

Primary use case
Most low-code platforms focus only on internal,
back-end workflows; few have consumer-focused
capabilities (e.g., styling, anonymous users)

Built for any type of application including both
internal and external-facing software

Relationship to code
Scripting inserted in specific parts of the platform,
designed to make writing code more efficient;
platform user writes code

Substitutes code with configuration, configuration
is then translated to code automatically upon
rendering; platform user never sees code

Scripting language
Varies, some allow for commonly-used
languages, others use their own proprietary
language that must be learned

None, scripting is not allowed anywhere
on the platform

8 No-Code vs. Low-Code

Before moving forward,
we should highlight two
important distinctions
about NC.

One: several simple,
consumer-grade “no-code”
solutions allow users to,
say, design a website or
a survey sans any coding
(e.g., Squarespace, Survey
Monkey, etc). These are
fine for limited applications
with little need for
advanced functionality.
There are also “special
purpose” NC systems that
are only applicable in very
specific areas like HR or
Accounting, but can’t be
used in other parts of the
business. In this eBook, we
are focusing on enterprise-
level NC platforms like
Unqork which are designed
to build complex, robust
applications for any
industry, any role, or
any user.

Easier
to Build

Harder
to Build

Simple
Capabilites

Enterprise
CapabilitesCapabilites

SINGLE USE
NO-CODE PLATFORMS

SPECIAL PURPOSE
PLATFORMS

ENTERPISE NO-CODE

CUSTOM CODE

LOW-CODE
PLATFORMS

Website

CRM

BPM

Survey

Finance

Workflow

Marketing

HR

Document

Spreadhseet

IT

Two: the phrase “no-code” does not mean that there is no code anywhere in the platform—
rather, NC provides a layer of abstraction between the user and the codebase. With no-
code, organizations can focus all their efforts on configuring application logic, rather than
dealing with code or syntax. The platform takes care of everything “underneath the hood”
and automatically translates the user’s configurations into code upon rendering.

With NC, there are no languages to learn or master (proprietary or otherwise). Everything
is handled by manipulating settings on different configurable modules that represent either
user-facing elements on back-end functionality. Indeed, scripting isn’t even allowed on most
NC platforms (because that’s kind of the point). This is a powerful distinction between LC
and NC, which leads to many inherent advantages that we’ll detail in the next section.

https://www.unqork.com/resources/latest-content/how-unqork-built-an-innovative-testing-framework-that-moves-at-the-speed-of-no-code

9 No-Code vs. Low-Code

The intuitive code-free interface of NC means it can also be accessed by a wider-range of
users. By eliminating code from the development process, NC platforms provide several distinct
advantages over LC. Notably, NC is...

…way faster: With NC, organizations can focus their efforts on solving business
challenges rather than coding ones. Consider that: 1) a typical hand-coded enterprise
application can take 9-12 months to build, and 2) with LC, building an application of
equal complexity can be sped up to 3-6 months. However, with NC, the process can be
executed in just 2-3 months.

…far easier to use and results in improved collaboration: Learning to code is difficult,
it takes years to become highly productive and efficient. NC’s drag-and-droppable,
module-based interface opens the development process to a wider spectrum of
business users who can create/edit/approve parts of the application themselves. This
enhanced collaboration can help bridge the divide between IT and business teams.

The Advantages of No-Code
Over Low-Code
While LC tools can help coders be a bit more
efficient in certain development tasks, NC
provides a single unified platform to handle
all development tasks.

10 No-Code vs. Low-Code

…able to bridge the IT skills gap: LC still requires organizations to keep coders with
specialized knowledge on the payroll, which only becomes more expensive as the IT
skills gap continues to widen. Since NC is easier to use overall, organizations can be
less reliant on specialized (i.e., costly) coding skill sets.

We should note that NC does not eliminate the need for engineers. Rather, NC allows
experienced engineers to spend their time building a greater number of effective, user-
friendly custom applications. At the same, less complex software upkeep tasks can be
relegated to less-experienced engineers who are just learning their way.

…far less prone to errors: Syntax can be very tricky and fragile—even for experienced
coders. Every time you type code (which, to reiterate is still necessary with LC), mistakes
can be made. When bugs pop up, they need to be investigated and smashed. By
removing the need to write any code, NC completely removes the specter of human error.

...future proof: Any code you insert into your application instantly becomes tomorrow’s
legacy technology. In the case of LC, business logic is completely separated from
technology upgrades. This means whenever the tools are upgraded, the system can fail.
With NC, any system upgrades won’t break any business logic designed within the system.

https://www.comptia.org/content/research/assessing-the-it-skills-gap
https://www.comptia.org/content/research/assessing-the-it-skills-gap
https://www.unqork.com/resources/latest-content/how-unqork-built-an-innovative-testing-framework-that-moves-at-the-speed-of-no-code

11 No-Code vs. Low-Code 11 No-Code vs. Low-Code

The Technology

Low-Code No-Code

Front-end
development

Basic functionality can be configured in a visual
editor, but complex operations (e.g. form data
validation) requires scripting

Both basic layouts and and complex operations
can be configured without the need for scripting

Back end processes
and workflow

Application workflow can be configured visually,
executing either pre-built modules or scripting

Application workflow can be configured visually,
executing either pre-built modules or scripting

Integrations
Modern integrations done with configuration,
but legacy systems or more complex data
transformations require code

Modern and legacy integrations can be
configured without scripting

Data
transformations

Data transformations and logic requires complex
code and data transformation

Conduct data transformations with a completely
visual ETL tool that incorporates visual import

The Results

Low-Code No-Code

Time to first build
Faster: typically a low-code application of equal
complexity can be completed in 3-6 months
relative to 9-12 for a typical enterprise application

Much Faster: typically a no-code
application of equal complexity can be
completed in 2-3 months

Ease of making
material changes

Difficult: because code is involved an engineer
must decipher and debug often idiosyncratic
lines of code

Easy: all configuration takes place within the
confines of business logic, only changes to
business logic are required to change
the application

Ease of hiring
and training

Difficult: requires either consultants trained in
specific language or seasoned developers that
already understand code

Easy: anyone versed in business logic and
decisioning can configure on a no-code platform

Total cost of
ownership

Slightly less: basic elements of code
maintenance and support still required

None: no legacy, no editable codebase to
maintain or upgrade

12 No-Code vs. Low-Code

No-Code in Action
No-code isn’t just some theoretical future
application—it’s making a very real impact
right now. In this section, we’ll explore
a couple of real-world examples of how
no-code was used to address challenges
through the rapid development of robust
digital applications.

12 No-Code vs. Low-Code

CASE STUDY

A Wealth Manager Used No-Code to Digitize its
Entire Client Lifecycle in Just 12 Weeks
With no-code, organizations are able to accelerate the development of custom software. Take this
example from a global-leading wealth management firm, which used no-code to develop and deploy a
robust value-creating digital system in just 12 weeks.

CHALLENGE

Facing a revenue slowdown due to low-advisor productivity and prolonged time to onboard and
service clients, the firm’s margins were under pressure due to the high operational cost and risk
driven from manual processes and controls.

SOLUTION

Using Unqork’s no-code solution, it only took 12 weeks for the wealth manager to build an end-
to-end digital solution, fully automating client/advisor data capture, KYC, suitability, product
selection, and account opening. The no-code solution was fully integrated with record keeping
systems, as well as third-party services such as SFDC, Docusign, and PLAID.

RESULTS

Not only was the application developed and deployed in record time, but it resulted in tangible
business benefits.

• Accelerated client onboarding times by 60%

• Reduced operational risk by 70% with automated controls

• Decreased cost of operations and ownership by 40%

• Increased revenue by 20%

13 No-Code vs. Low-Code

CASE STUDY

NYC Used No-Code to
Mount a Rapid Digital
Response to COVID-19
The impact on New York City by the initial
wave of the COVID-19 pandemic was as deep
as it was rapid. In order to respond adeptly to
the crisis, the city needed to quickly develop
a suite of robust digital tools that no one was
planning—let alone even considering—just a
month before.

The speed of traditional development
methodologies (particularly those at the local
government level) would not be sufficient to
address the rapid pace at which the disease
was rampaging through the city. In order to
accelerate the development of four enterprise-
grade digital portals to address the crisis, the
city’s COVID response team tapped the power
of Unqork’s no-code development platform.

• COVID-19 Engagement Portal: In just
72 hours, the city was able to build
and deploy the COVID-19 Engagement
Portal. The Portal, which is available in 11
languages, allows residents to self-report
COVID-19 data, which the city can use to
map the impact of the virus and connect
residents with critical services.

• PPE Donation Portal: As infection rates
grew at an alarming rate in those first few
months, the healthcare system found itself
facing shortages of critical PPE, so the
city worked with Unqork to rapidly build a
PPE Donation Portal that allows individuals
and organizations to donate much-needed
medical equipment.

• GetFoodNYC Delivery Portal: Prior to
the pandemic, millions of NYC residents
relied on food pantries, soup kitchens
and congregate meal programs at senior
centers. Given the fast-moving economic

impact of the pandemic, the number of city
residents who depend on these services
expanded at a rapid clip.

To provide food for COVID-19-vulnerable
and food insecure New Yorkers not
currently served through existing food
delivery programs, Unqork worked with the
City to launch the GetFoodNYC Delivery
Program which provided Taxi Limousine
Commission-licensed drivers with the
opportunity to earn money while making
food deliveries to vulnerable New Yorkers.

• “Project Cupid” Marriage License Hub:
To ensure that citizens could still enter
legally-recognized unions despite social-
distancing barriers, the city worked with
Unqork to develop a hub to process
marriage license applications remotely.
The Project Cupid platform digitized the
entire process from application to identity
verification to online fee payments to
license generation.

The development process for these portals
would have been far slower had they relied on
traditional development methodologies. Since
going live, these support hubs have enabled
the delivery of over 40 million free meals to
residents, accepted donations of essential
medical supplies, and allowed NYC residents to
self-report how they are impacted by COVID-19.

“In just a few days, the Unqork platform
helped us deploy applications to
address a wide spectrum of needs—
from health impacts, to hunger, to PPE
for healthcare workers on
the front lines.”

-JESSICA TISCH, COMMISSIONER OF DOITT
AND CIO FOR NEW YORK CITY

13

https://cv19engagementportal.cityofnewyork.us/
https://cv19engagementportal.cityofnewyork.us/
https://cv19engagementportal.cityofnewyork.us/#/display/5e7b8d9bf73aa702106ed0c7
http://GetFoodNYC Delivery Program
http://GetFoodNYC Delivery Program
https://projectcupid.cityofnewyork.us/app/cupid#/display/5ea1d0bda46ab1020e1659f4
https://www.wsj.com/articles/new-york-city-serves-up-food-to-fill-in-the-gaps-amid-the-pandemic-11591106402
https://www.wsj.com/articles/new-york-city-serves-up-food-to-fill-in-the-gaps-amid-the-pandemic-11591106402

14 No-Code vs. Low-Code

Business impact realized by Unqork customers

Developed a single application automating end-to-end
loan origination across borrower home loan application,
underwriting, offer, and acceptance processes.

• Speed to Market: 6 weeks to go from ideation
to production, with only 4 resources

• Increased revenue capture potential &
improved broker productivity

Digitization of home loan application process
FINANCIAL INSTITUTION

Developed an end-to-end, digital self-service solution
automating sponsor, plan, servicing, pricing, advisor,
and TPA data capture.

• Speed to Market: 16 weeks to go from
ideation to production, with only 4 resources

• Accelerated client onboarding times from
4 weeks to 3 hours

Digitization of plan sponsor onboarding
A TOP 5 RETIREMENT SOLUTIONS PROVIDERA TOP 5 RETIREMENT SOLUTIONS PROVIDER

Developed an end-to-end digital solution fully
automating intake, quote, bind, issue for no-touch and
underwriter referral workflows.

• Speed to Market: 12 weeks from inception to
production, with only 5 resources.

• Reduced average time-to-quote by 90%
(real-time quoting)

Digital front office and policy administration
GLOBAL P&C CARRIER

Developed an end-to-end digital marketplace concept
that enables brokers and carriers to manage the
lifecycle of the sales prospect.

• Speed to Market: launched marketplace
concept in 8 weeks

• Improved response time to customers by more
than 50% resulting in higher sales potential

Digitized broker and carrier sales operations/marketplace
GLOBAL INSURANCE BROKERAGE

Developed a direct-to-consumer, customer
authenticated, self-service application (mobile native)
that digitized entire interview process and underwriting.

• Speed to Market: Launched app from ideation
to production in 8 weeks

• Reduction in turn-around time, from
45 minutes to less than 10 minutes

Digitized invasive medical questionnaire
A TOP 5 LIFE INSURER

In Conclusion
With no-code, organizations can separate the benefits of code from the pitfalls of coding. This
paradigm is more important than ever as traditional methodologies have proven themselves
incapable of keeping up with the expectations of today’s modern connected enterprise.

Here at Unqork, we believe the future of software development is based on configuration,
not code. We believe that the elimination of code is the only way to bring development up to
today’s standards. Want to learn more about what no-code can do for your organization?
Get in touch to see how we can work together.

Enterprise application
development, reimagined

Unqork is a no-code application platform that helps large enterprises build
complex custom software faster, with higher quality, and lower costs than

conventional approaches.

https://forms.unqork.com/demo/
https://forms.unqork.com/demo/?hsCtaTracking=4d7f102c-56d1-4057-95e2-3a2402d1b280%7C4a0ff44c-3dfe-4766-9fd8-2d669e3a89e2
https://forms.unqork.com/demo/?hsCtaTracking=4d7f102c-56d1-4057-95e2-3a2402d1b280%7C4a0ff44c-3dfe-4766-9fd8-2d669e3a89e2
https://www.unqork.com/platform
https://forms.unqork.com/demo/?hsCtaTracking=4d7f102c-56d1-4057-95e2-3a2402d1b280%7C4a0ff44c-3dfe-4766-9fd8-2d669e3a89e2
https://www.unqork.com/platform

	Button 11:
	Button 12:
	Button 13:
	Button 14:
	Button 15:

